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Abstract. We calculate the two-dimensional probabilityP(Mx,My) for the magnetization in
a two-dimensionalXY model of finite size. We show that, for arbitrarily largeN , there is a
topological difference between the distributions in the low-temperature spin wave regime and in
the high-temperature paramagnetic regime. In the low-temperature phaseP(Mx,My) is a well-
defined ring function and we calculate an upper bound forP(0, 0) 6 0.0019(T /J )2. Even so,
this is consistent with the susceptibility per spin,χ , being divergent. We show further that the
distribution functionQ(M) for the scalar magnetization has a universal form, scaling with the
single variabley = JT −1MLT/4πJ , whereL is the system size andJ is the coupling constant.
We show thatχ has considerable structure, with two terms of orderN , one due to the spin waves
and the other due to vortices. This leads to a peak inχ at the Kosterlitz–Thouless–Berezinskii
transition.

1. Introduction

The finite-size two-dimensional (2D)XY model is an appealing system for theoretical study
as it shows critical behaviour over a range of temperatures below the Kosterlitz–Thouless
transition temperatureTKT, is extremely accessible to analytic techniques and is of broad
experimental relevance [1, 2]. The model is defined with the Hamiltonian

H = −J
∑
〈i,j〉

cos(θi − θj ) (1)

whereJ is the ferromagnetic coupling constant andθi is the angle of orientation of spin
vectorSi , constrained to lie in a plane. The summation is over nearest neighbours and we
take the spins to be on the sites of a square lattice with periodic boundary conditions. We
use a system of units with Boltzmann’s constantkB equal to unity throughout.

The critical nature of the low-temperature phase gives the 2DXY model the intriguing
property that in a realizable macroscopic system not all the physically observable quantities
can be described by taking the thermodynamic limit. In particular, true long-range magnetic
order is excluded for any temperature by the Mermin–Wagner theorem [3]. However, at low
temperature the finite-sizeL provides a cut off for the divergent correlation length, giving
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a substantial finite-size magnetization per spinM(L) [4, 5]. The latter is not a true order
parameter, as it is not an intensive quantity; however, it goes to zero so slowly with system
size that it only approaches zero on a planetary length scale. Thus, the thermodynamic limit
is inaccessible with respect to the pair of conjugate thermodynamic variables, magnetization
M and fieldH, even though it is perfectly accessible with respect to internal energyU ,
entropyS and temperatureT . Finite size is not the only way to introduce a cut off at small
wave vector and so restore the magnetization. Weak coupling to the third dimension, spin
anisotropy or weak crystal fields can have equivalent effects [4, 6].

Such effects are common in 2D systems, and were first pointed out in the 1930s by
Peierls [7]. They have also been discussed by, for example, Landau and Lifshitz [8], Mermin
[9], Berezinskii and Blank [10] and several other authors [11]. We have illustrated that the
magnetic order observed in real 2DXY systems is a direct result of finite-size corrections
[5]. Such experimental systems show a remarkable universal property, that is a power law
dependence of the magnetization on temperature, with exponentβ ≈ 0.23 [1]. Using the
renormalization equation of Kosterlitz for the spin wave couplingK = J/T , we calculated
the finite-size magnetization in the region of the Kosterlitz–Thouless–Berezinskii transition,
and identified a finite-size critical region bounded between temperaturesT ∗(L) andTC(L).
T ∗ is the shiftedTKT in the sense that at this temperature the vortex distribution renormalizes
in a self-similar manner on length scales up toL, the system size.TC(L) is the temperature at
which the correlation length equalsL, and corresponds to the standard definition of a critical
temperature for a finite system [12]. We found power law behaviour for the magnetization
as a function oft = TC(L) − T , with universal exponentβ = 3π2/128= 0.2312. . ., in
agreement with numerous experiments [1]. The temperaturesTC(L) andT ∗(L) can both be
measured experimentally, and the values confirm our theoretical predictions extremely well
[14, 16].

As this finite-size magnetization is of direct physical relevance, and is so surprisingly
reminiscent of a true order parameter, it is of interest to investigate its properties further.
In section 2 we calculate the probability distribution for the finite-size magnetization, and
its first and second moments. We can expect that this distribution is non-Gaussian in the
low-temperature regime, as this is a specific property of a critical system. We find, in fact,
the distribution functionP(Mx,My), whereMx andMy are the two components of the
order parameter, does not approach a 2D Gaussian function centred onMx = My = 0, even
in the thermodyamic limit. Rather it remains a well-defined ring function, with probability

maximum at a valueM(L) =
√
M2
x +M2

y and a minimum at the origin. We discuss, further,

the universal properties of this function. This has consequences for the susceptibility which,
as is well known, is divergent at all temperatures belowTKT. One of our main results is that
susceptibility, although divergent in the sense that it scales with the system size, remains
numerically quite small, and should be measurable in a practical system†. This ‘infinite’
susceptibility furthermore has a non-trivial temperature dependence, again reminiscent of a
second-order phase transition. In section 3 we explore the physical origin of this temperature
dependence, and conclusions are drawn in section 4.

† We have previously argued that the system size relevant to magnetic experiments rarely exceeds 106 spins, as
they are limited by symmetry-breaking perturbations. It is possible that liquid Helium film experiments could
provide larger system sizes, see [15].
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2. Fluctuations in the low-temperature regime

The physics of the 2DXY model is dominated by two types of excitation: harmonic spin
waves and spin vortices [4, 17–20]. The latter map onto a neutral 2D Coulomb gas in the
grand canonical ensemble, with the temperature scale of the fugacity set by the coupling
constantJ . At TKT pairs of vortices of opposite ‘charge’ unbind and the high-temperature
phase constitutes a gas of free charges.

It is desirable to study models which support only those excitations pertinent to the
problem, namely harmonic spin waves and vortex pairs, while maintaining the fullXY

symmetry. A generic model of this type is the Villain model [21], which is the basis of
systematic renormalization group calculations [17, 19, 20]. In this paper we study what we
refer to as the harmonicXY , or HXY , model [14]. Its Hamiltonian is

H = −J
∑
〈i,j〉

[1− 1
2(θi − θj − 2πn)2] (2)

wheren = 0,±1 is an integer chosen so that(θi − θj −2πn) lies between±π . This model
is almost equivalent to the Villain model [21], but is more practical from a numerical point
of view, as the vortex variablen is not a thermodynamic variable, but is constrained to the
valuesn = 0,±1 [19]. It is found that the neglect of the anharmonic but analytic terms in
the development of the cosine interaction results in accurate agreement between numerical
and renormalization group estimates forTKT [22]. In fact the theoretical prediction of
TKT = 1.350 85J appears to be exact. At temperatures which are small compared withTKT

the vortex density is exponentially small and theHXY model reduces to the harmonic spin
wave, or Gaussian model, which is solved exactly in the appendix.

It is convenient to define an instantaneous scalar order parameterM

M = 1

N

√( ∑
i=1,N

Si

)( ∑
i=1,N

Si

)
. (3)

The Mermin–Wagner theorem applies to the thermal average〈M〉 [3, 2]. In the appendix
we derive, using spin wave theory, the following result for the magnetization〈M〉, exact to
leading order inN :

〈M〉 =
(

1

2N

)T/8πJ
. (4)

We also show that the susceptibility per spin, defined as

χ = N

T
(〈M2〉 − 〈M〉2) (5)

is given by the expression

χ = 〈M〉
2

T

∑
r

[
exp

(
T

J
×G(r)

)
− 1

]
(6)

whereG(r) is the lattice Green’s function for a square lattice (see the appendix). To an
excellent approximation one finds

χ = 1

2a2D

N〈M〉2T
J 2

a2D = 258.6 (7)

with the susceptibility per spin therefore diverging asχ ∼ N1−T/4πJ .
In figure 1 we show the initial evolution, in Monte Carlo time, of the vector

magnetization in thex–y plane, for a 1024 spin system atT/J = 1, starting from a
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Figure 1. Initial evolution, in Monte Carlo time, of the vector magnetizationM = (Mx,My)

in thex–y plane, for a 1024 spin system atT/J = 1, starting from a random configuration with
M = 0. The random walk is shown for the first 20 000 Monte Carlo time steps per particle
which illustrates the timescale on which the magnetization revolves.

random configuration. This is still in the low-temperature phase, where the vortex density
is negligibly small and the system is perfectly described by harmonic spin waves. One can
see that the system escapes rapidly from the origin. After the transient effects have died
away the order parameter fluctuates about a well-defined mean and never returns close to
the origin, while the direction of magnetization changes in a relatively short time. The walk
is shown for the first 20 000 Monte Carlo time steps (MCS) per particle which illustrates
the timescale on which the magnetization revolves. It should be noted that the simulations
used to calculate thermal properties, described below, used about 107 MCS, the first 105

steps being used only for equilibration.
From figure 1, the scalar magnetization therefore appears to be a well-defined

quantity despite its fluctuations, as measured by the susceptibility, being divergent in the
thermodynamic limit. From equation (7) we see that it is well-defined because the prefactor
of the ‘divergent’ susceptibility is small and goes to zero asT goes to zero. The normalized
standard deviation of the distribution,

σ

〈M〉 =
√
〈M2〉 − 〈M〉2
〈M〉2 =

√
NχT

N〈M〉 (8)

has a numerical value of only≈ 0.04T/J , but is independent of system size. In a non-
critical system, with finite correlation length one expectsσ/〈M〉 to go to zero asN−1/2

in the largeN limit. We remark that even in three dimensions this criterion is not quite
satisfied for theXY model and we find thatσ/〈M〉 varies asN−1/3 only (see the appendix).

We can parametrize the vector magnetization in terms of Cartesian componentsMx,My
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or in terms ofM and the angle in the planeφ, from which we define the probability
distributionsP(Mx,My) andQ(M,φ). From the symmetry of the HamiltonianQ(M,φ)
is separable, withQ(M,φ) = 1/2πQ(M). This is clearly illustrated in figure 1. The
distributionsP , andQ are therefore related

P(Mx,My) = 1

2πM
Q(M) M2 = M2

x +M2
y (9)

andσ gives the width of the distributionQ(M).
If the system exhibited a standard second-order phase transition we would expect

P(Mx,My) to change form as one passes throughTC [12]. At high temperatures it should
be a function centred at the origin, and with width varying as 1/N1/2. Such a narrow
distribution is represented to an excellent approximation by a Gaussian function. At low
temperatures the distribution should change to a ring function whose radial cross section
P(M, 0) should be a bimodal distribution with sharp peaks centred atMx = ±〈M〉. A
Gaussian function comes from the first term in a Landau expansion for the free energy
F(M). At the critical point the Landau expansion is invalid, and the susceptibility is
divergent, from which we expect to find thatP(M, 0) is non-Gaussian, with a width of
order unity.

We have calculatedQ(M) from Monte Carlo simulation, from which we can reconstruct
P(M, 0), for the 2DHXY model of sizeN = 1024 andN = 10 000 and for a three-
dimensional (3D)HXY system of sizeN = 1000 spins. The number of MCS was typically
107 per temperature. Relaxation times of 105 MCS were found to be sufficient to reach
equilibrium at all temperatures.

In figure 2 we showP(M, 0) for T/J = 0.5, 1.0, T ∗/J = 1.46 andTC/J = 1.79

Figure 2. Probability distribution for the magnetization of the finite 2DHXY model,P(M, 0),
for T/J = 0.5, 1.0, T ∗/J = 1.46 andTC/J = 1.79 for N = 1024 spins. The area under the
curves is not normalized, as it represents a slice through a 2D distribution. The volume swept
out by the curve when rotated in the plane through 2π is correctly normalized. These data
should be compared with equivalent curves for three dimensions, shown in figure 3.



8368 P Archambault et al

Figure 3. Probability distribution for the magnetization of the finite 3DHXY model,P(M, 0),
for T/J = 1, 2, 3, 4, 7, for N = 1024 spins. The area under the curves is not normalized, as it
represents a slice through a 2D distribution. The volume swept out by the curve when rotated
in the plane through 2π is correctly normalized.

for N = 1024 spins. These data should be compared with equivalent curves for three
dimensions, shown in figure 3. The 3D system follows exactly the scenario outlined above.
For the 2D system the distribution atTC has a finite value at the origin,Mx = 0,My = 0, just
as for three dimensions. At lower temperatures the probability of finding the magnetization
at the origin goes to zero, as already observed in figure 1. However, despite the well-
defined finite-size magnetization, the distribution remains wider than in three dimensions
and is asymmetric, with a tail in the distribution forM < 〈M〉. This is consistent the 2D
system remaining critical throughout the low-temperature spin wave regime. The system
can have both a divergent susceptibility and a well-defined finite-size magnetization because
of the very small prefactor in equation (7).

In figure 4 we compareP(M, 0), for the 2D and 3D distributions, with a Gaussian fit
using the first two moments, as calculated in equations (4) and (6). In two dimensions
the discrepancies are large, particularly in the tails of the distribution. ForM > 〈M〉 the
distribution is steeper than the fit, while forM < 〈M〉 there is a long tail extending to
smaller values ofM than those offered by the Gaussian. The tail in the distribution, at
the temperature shown, ofT/J = 1.0, is entirely due to spin wave excitations and not to
vortices. The vortex density at this temperature is exponentially small and does not make a
significant contribution to the distribution. That the spin waves alone can produce the tail is
consistent with the system being critical throughout the spin wave regime, with fluctuations
towards configurations withM < 〈M〉 having a limitingly small cost in free energy. As
the temperature is increased and vortices do appear they give access to configurations at
smaller magnetization and the tail is extended towards the origin [23]. This can be seen
by comparing curves forT/J = 1 andT/J = 1.46 in figure 2. In three dimensions the
Gaussian fit is much improved, particularly in the wings of the distribution and the behaviour
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Figure 4. Probability distribution (full curve) for the magnetization of the finite 2DHXY
model,P(M, 0), for T/J = 1, (a) and of the finite 3DHXY model,P(M, 0), for T/J = 1,
(b) for N = 1024 spins. The broken curve represents a Gaussian fit using the first two moments
of the distribution, calculated from spin wave theory.

conforms closely to predictions for an ordered, non-critical system.
The exact result (4) confirms scaling arguments for the magnetization at a critical point

[12], 〈M〉 ∼ L−β/ν , with β and ν the relevant critical exponents. Despite the fact that a
conventionalβ andν do not exist for the 2DXY model, their ratiox = T/4πJ is perfectly
well defined through equation (4) for all temperaturesT 6 T ∗. At T ∗ the scaling relation

x = β/ν = d

δ + 1
= 1

8
(10)

is satisfied by puttingT/J ≈ π/2, which is the mean-field approximation forTKT [18].
More precisely, we have shown [5] that the renormalization of the temperature due to
vortices is taken into account correctly, by replacingT/J with the effective temperature
(T /J )eff = π/2 at T ∗, in which case the scaling relation is satisfied exactly.

The distribution function for the magnetization at a critical point has been discussed by
several authors [12, 13]. Binder [12] argued, using the example of an Ising system with
distributionPL(M), that within the critical region

PL(M) = Lβ/νP (L/ξ,MLβ/ν) (11)

where ξ is the correlation length.ξ is the length scale at which one can expect a cross
over to a non-critical regime with Gaussian fluctuations. Very close to the critical point
the correlation length of the infinite system would be much bigger than the system sizeL.
In this situation one expects self-similar behaviour, withL being the only important scale
above the microscopic length.PL should therefore depend on the single variableMLβ/ν .

In our case we have a line of critical points for all temperatures less thanTKT with
temperature-dependent exponents. If the universal function is to be the same at different
critical points one should expect an explicit temperature dependence despite there being no
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Figure 5. log(σQ(M)) versus(M − 〈M〉)/σ for T/J = 0.5 for N = 100 (stars),N = 1024
(circles),N = 10 000 (squares), and forT/J = 1.0 for N = 1024 (triangles).

correlation length. In figure 5 we plot log(σQ(M)) versus(M − 〈M〉)/σ for N = 102,
103 and 104 spins atT/J = 0.5 as well as forN = 103 spins atT/J = 1.0. The data
clearly fall on a universal curve over five orders of magnitude. We define a reduced variable
y = M/σ ∼ JT −1MLT/4π , with y = 〈M〉/σ ∼ JT −1 which is independent ofL. Our
universal function is therefore of the formQ(y−y). We observe corrections to universality
for systems containing less that 100 spins.

As one approachesT ∗, and vortex pairs become excited in appreciable numbers, the
asymmetric tail to the distribution becomes more pronounced and the data no longer fall on
the universal curve. In this regime there are two independent contributions to the critical
fluctuations, as is discussed further in the next section.

As the magnetization is zero in the thermodynamic limit it is of interest to calculate
the probability,P(0, 0), of findingM ‘tunnelling’ to the origin. As the standard deviation
σ � 〈M〉 in the spin wave regime, we can write, to an excellent approximation

P(M, 0) ≈ 1

2π〈M〉Q(M) (12)

which means thatσ 2 is the variance of both distributions. Within this approximation we
can now calculate an upper bound on the probabilityP(0, 0) using Chebyshev’s inequality

P(0, 0) 6 σ 2

〈M〉2 = 0.0019

(
T

J

)2

(13)

which is independent of system size.



Magnetic fluctuations in a finite two-dimensionalXY model 8371

Figure 6. The probability distribution for the magnetization of the finite 2DHXY model,Q(M),
as a function of system sizeN for T/J = 0.5. The curves shown correspond toN = 1024 and
N = 10 000 spins.

The actual value may well be much less than this bound as is clearly indicated from
figures 1 and 2. However, equation (13) shows that even in the thermodynamic limit
the probability of the magnetization tunnelling to the origin is extremely small for all
temperaturesT < J . As N increases the mean magnetization shifts towards the origin,
but at the same time the width of the distribution falls to zero. As a result the distribution
remains a well-defined ring function right to the thermodynamic limit and one never, for
any system size, has a distribution function centred on the origin, as in the paramagnetic
regime. This result gives a clear practical meaning to the topological long-range order [18]
in the 2DXY model; the finite-size magnetization is precisely defined for arbitrarily large
system size, even though the amplitude goes to zero.

The effect of the distribution narrowing with increasing system size is illustrated in
figure 6, where we showP(M, 0) for N = 1024 andN = 10 000 atT/J = 0.05.

3. Fluctuations near the Kosterlitz–Thouless–Berezinskii phase transition

In this section we consider in more detail the behaviour of the susceptibilityχ as one leaves
the spin wave regime and passes through the Kosterlitz–Thouless–Berezinskii transition. In
figure 7 we show Monte Carlo data forχ for 1024 spins, as a function of temperature.
The low-temperature result, equation (7), is seen to fit the data very accurately up until
T ≈ J . Above this temperature vortex pairs are excited in appreciable numbers, and one
observes a sharp rise, with a maximum at a temperatureTC(L) [5]. This corresponds to the
temperature in figure 2 at which the probability distribution broadens. In this section we
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Figure 7. Susceptibility versus temperature for the finite 2DHXY model, withN = 1024
spins. Circles represent the Monte Carlo data, the broken curve is expression (7) and the full
curve is the result of the real-space renormalization group calculation, as described in the text.

present arguments to identify the physical origin of the susceptibility peak.
The peak in the susceptibility cannot be explained by simply replacingT by a vortex-

renormalizedT ′ in equation (15). It is easily verified that this does not give the required
divergence, even ifT → ∞. Rather, the peak represents a second divergence of orderN

in addition to that due to the harmonic spin waves. It means that a new length scale is
introduced into the problem by the vortices, which one can see by writing the susceptibility

χT =
∑
r

g(r)− 〈M〉2 (14)

whereg(r) is the two-spin correlation function. To obtain a divergence of orderN requires
a non-zero contribution from each term in the summation in equation (14). Definingξ as
the length scale at whichg(r > ξ) = 〈M〉2, then the susceptibility is given byχ ∼ ξ2, and
a divergence of orderN implies thatξ → L.

In the spin wave regimeχT takes the form (see the appendix)

χT ≈
∑
r

exp(−K−1G(0))(1+ 1
2K
−2G(r)2)− 〈M〉2 (15)

whereK = J/T . The ‘infinite’ susceptibility but with small amplitude arises because
exp(−K−1G(0)) = 〈M〉2 leaving one with

χT ≈
∑
r

1

2
exp(−K−1G(0))K−2G(r)2 = N〈M〉2K−2

2a2D
. (16)

The principle effect of the vortex pairs, excited in appreciable numbers aboveT ∼ J , is
to soften the spin wave modes. The spin stiffness at wavevectorq is changed fromq2K to
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an effective valueq2Keff(q), and with this the full expression for the susceptibility becomes

χT ≈
∑
r

exp(−K−1
eff (r)G(0))(1+ 1

2K
−2
eff (r)G(r)

2)− 〈M〉2. (17)

If K−1
eff varies withr then exp(−K−1

eff (r)G(0)) is no longer equal to〈M〉2 and one finds a
second contribution to the divergent susceptibility whose amplitude can be much larger than
the spin wave term. This second correlation length is therefore directly related to the length
scale over whichKeff(r) changes withr, and ξ may be interpreted as the length beyond
whichKeff(r) is approximately constant.

We can calculateKeff(r) to a very good approximation using the renormalization group
theory for the 2DXY model [17, 19] and in what follows we use the nonlinear real space
renormalization equation of José et al [19], which gives us directly an expression forK−1

eff (r)

For T 6 J , Keff(r) is equal to the unrenormalized spin wave couplingK = J/T for
all r. For J < T < TKT the effect of the renormalization is very small for the system
sizes we consider, as can be seen from figure 6 and it is only aboveTKT that the second
term has an appreciable effect. In the thermodynamic limitTKT is the fixed point for vortex
renormalization and it marks the dividing line between renormalization ofKeff(∞) to a new
constant value and to zero. This is the universal jump ofKeff from 2/π to zero. Above
TKT, Keff(r) remormalizes in an extremely nonlinear fashion, staying asymptotically close
to the universal value of 2/π before shooting to zero at a length scaleLC, which Kosterlitz
identified as the correlation length [17] and from which we defineTC(L). We therefore
conclude that for a finite systemKeff(r) does not renormalize to zero for temperatures
in the rangeTKT < T < TC(L). At an intermediate temperatureT ∗(L), Keff(r) rapidly
approaches the universal value 2/π and is essentially independent ofr for lengths of order
L. AboveT ∗, Keff varies withr over length scales of orderL, and atTC(L) Keff(L) = 0.

In the region ofTC, 〈M〉2 no longer depends on a single value ofKeff either and
one could, in principle, derive an accurate expression for it by calculatingKeff(q), then
summing over spin wave modes. However, as the sum is dominated by contributions at
long wavelength we approximate by writing〈M〉2 = exp

(−K−1
eff (L)G(0)

)
. This is an

excellent approximation up toT ∗(L), and is reasonable even atTC(L) whereKeff(r) varies
over the whole range fromr = 0 to L. It then gives us an expression forχ in terms of
Keff(r).

We indeed obtain a peak inχ(T ) of approximately the correct shape, but with amplitude
off by a scale factor of O(1). Rescaling the peak we obtain the fit shown in figure 7. In
the region ofT ∗ the curve fits the data very well. It is insensitive to the details of the
renormalization, with different procedures simply changing the amplitude. In the region
of TC errors arise mainly from the fact that our calculatedKeff(L) falls to zero atTC,
driving our approximate expression for〈M〉 prematurely to zero. The position of the peak
is slightly shifted to lower temperature because of this andχ is underestimated aboveTC,
where the finite-size magnetization remains, in reality non-zero. The curve shown is for
renormalization by four discrete steps. In a more sophisticated theory one should take into
account the discrete lattice structure. The fit, however, confirms our interpretation of the
susceptibility peak: it arises from the dependence ofKeff on length. Physically this is a
consequence of the fact that aboveT ≈ T ∗ the vortex distribution does not renormalize in
a self-similar manner.

Our observation of a peak in the susceptibility is consistent with the recent experimental
results of Elmerset al [24], who studied theXY -like ultrathin magnetic film Fe(100) on
W(100). We defer a detailed comparison of this with other experiments, together with a
more accurate calculation of the susceptibility, to a future publication.
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4. Conclusion

In conclusion we have studied the fluctuations of the finite-size magnetization in the 2D
XY model. We find that there is a topological difference between the distributions in the
high- and low-temperature phases, even in the limit asN → ∞, despite the fact that no
true symmetry breaking occurs. This gives the result that, although〈M(N → ∞)〉 = 0,
the probability,P(Mx = 0,My = 0), at the origin of the distribution is limitingly small at
low temperature, and is independent of system size. We have calculated an upper bound
for the value ofP(0, 0), equation (12), and find that it is extremely small and independent
of system sizeN . The distribution changes to the high-temperature form as one passes
through the Kosterlitz–Thouless–Berezinskii phase transition.

The fact that the variance of the distribution,P(Mx,My) is small is nevertheless
consistent with a divergent susceptibility at all temperatures belowTKT. We have shown
that the susceptibility for a system of sizeN has considerable structure. In fact, it has a
double divergence: the first is due to the critical nature of the low-temperature spin wave
regime, and the second, occurring in addition to the first, as one passes throughTKT, is due
to the unbinding transition of the Coulomb gas of vortex pairs.

We have shown that the distribution function for the finite-size magnetization falls onto
a universal curve of the formQ(y − y), y = JT −1MLT/4π . One might anticipate this
behaviour following the general results of finite-size scaling at a critical point. However,
we find a unique universal function for the entire line of critical points in the low-temperature
phase of the 2DXY model, with the reduced variabley depending on two parametersL
andT . There seems no reason, in general, to expect the same scaling function for critical
points belonging to different universality classes and it will be interesting in the future to
study the form ofPL(M) for different models.

Finally we note that, as shown in the appendix the spin wave approximation for the
2D XY model is exactly soluble, which means that, in principle we could calculate all the
moments of the distribution from which we should be able to reconstructQ(M).
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Appendix. Spin wave approximation

A.1. Free energy

At low temperatures one only needs to take into account the quadratic terms in the
Hamiltonian (1)

H ≈ 1
2

∑
〈r,r ′〉

(θr − θr ′)2 (A.1)

wherer is the position on the lattice of spini.
The Hamiltonian is diagonalized in Fourier space:

H =
∑
q

|ϕq |2× γq (A.2)
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where

θr = 1√
N

∑
q

e−iqrϕq ϕq = 1√
N

∑
r

eiqrθr

and where, in two and three dimensions:

γ 2D
q = 4− 2 cos(qx)− 2 cos(qy)

γ 3D
q = 6− 2 cos(qx)− 2 cos(qy)− 2 cos(qz)

(A.3)

whereqxi is the component ofq alongxi and the lattice constant is taken to be unity. The
partition function can be written in the separable form

Z(T ) =
∏
q

Zq(T ) =
∏
q

∫
dϕq

2π
√
N

exp

(
− K

2

∑
q

|ϕq |2× γq
)
. (A.4)

As γ0 = 0 the Goldstone mode can be treated separately

Z0 =
∫ π
√
N

−π√N
dϕ0/(2π

√
N) = 1.

For the rest of the Brillouin zone the limits of integration are set to infinity, which is an
excellent approximation at low temperature, giving

Zq(T ) =
√

T

2πJγq
(A.5)

and for the free energy

F(T ) = T

2J

∑
q 6=0

ln

(
2πJγq
T

)
. (A.6)

A.2. Green’s functions and the magnetization

We work in the reference frame of the instantaneous magnetization direction

θ̄ = tan−1

(∑
r sinθr∑
r cosθr

)
and define the angleψr = θr − θ̄ . Working in this reference frame conveniently removes
the Goldstone mode from the calculation. The Green’s function propagator is given by

T

J
×G(r) = 〈ψ0ψr〉 = 1

N

∑
q,q ′

e−iqr〈ψqψq ′ 〉. (A.7)

Using the propertyψq = ϕq(1− δ(q)), one can write:

T

J
G(r) = 1

N

∑
q 6=0

e−iqr〈|ϕq |2〉

G(r) = 1

N

∑
q 6=0

e−iqr

γq
.

(A.8)

The instantaneous magnetization, equation (3), can be written

M = 1

N

∑
r

cos(θr − θ̄ ) = 1

N

∑
r

cos(ψr).
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This definition ofM differs from that of equation (4) by terms of higher order in(1/N),
which, to an excellent approximation we can neglect. The thermal average magnetization
〈M〉 is then

〈M〉 = 〈cos(ψ0)〉 =
∞∑
p=0

(−1)p

(2p)!
〈ψ2p

0 〉 (A.9)

whereψ0 represents the orientation of an arbitrary spin. As the problem is Gaussian we
can apply Wick’s theorem [25]:

〈ψ2p
0 〉 = (2p − 1)!! × 〈ψ2

0〉p = (2p − 1)!! ×
[
T

J
G(0)

]p
(A.10)

with (2p− 1)!! = (2p− 1)× (2p− 3) . . .× 5× 3, from which we can explicitly calculate
the magnetization as a function ofG(0)

〈M〉 =
∞∑
p=0

(2p − 1)!!

(2p)!

[
−T
J
G(0)

]p
〈M〉 =

∞∑
p=0

1

2p × p!

[
−T
J
G(0)

]p
〈M〉 = exp

(
−TG(0)

2J

)
.

(A.11)

ForD = 2, G2D(0) = ln(2N)/4π + o(N−1); the magnetization is non-intensive.
For D = 3, G3D(0) = a − b × N−1/3 + o(N−1) with a = 0.252 73,b = 0.225 65; the

magnetization is intensive forN � 1.

A.3. Correlation function and magnetic susceptibility

We define the pair correlation function

g(r) = 〈S0Sr〉 = 〈cos(ψ0) cos(ψr)〉 + 〈sin(ψ0) sin(ψr)〉. (A.12)

By symmetry the sum over allr of the second term is zero and it therefore does not
contribute to the susceptibility, however the individual terms are not zero and contribute to
g(r).

Expanding the first term

〈cos(ψ0) cos(ψr)〉 =
∞∑
p=0

∞∑
q=0

(−1)p+q

(2p)! × (2q)!) 〈ψ
2p
0 ψ2q

r 〉 (A.13)

again using Wick’s theorem, and definingx = 〈ψ0ψ0〉 andy(r) = 〈ψ0ψr〉, we find

〈ψ2p
0 ψ2q

r 〉 =
min(p,q)∑
k=0

y(r)2k × xp+q−2k × B(p, q, k) (A.14)

with

B(p, q, k) = (2p)!

(2p − 2k)!
× (2q)!

(2q − 2k)!
× 1

(2k)!
× (2p − 2k − 1)!! × (2q − 2k − 1)!!

= (2p)! × (2q)!
2p+q−2k × (p − k)! × (q − k)! .
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Putting this into equation (A.13)

〈cos(ψ0) cos(ψr)〉 =
∞∑
k=0

∞∑
p=k

∞∑
q=k

1

(p − k)! × (q − k)! × (2k)! × y(r)
2k ×

(
−x

2

)p+q−2k

=
∞∑
k=0

∞∑
p=0

∞∑
q=0

∑
r

1

p! × q! × (2k)! × y(r)
2k ×

(
−x

2

)p+q
=
( ∞∑
k=0

∑
r

y(r)2k

(2k)!

)
×
( ∞∑
p=0

1

p!
×
(
−x

2

)p )2

. (A.15)

Using the definitions〈M〉 = exp(−x/2) andy(r) = (T /J )×G(r), we finally find

〈cos(ψ0) cos(ψr)〉 = 〈M〉2 cosh

(
T

J
×G(r)

)
. (A.16)

Following a similar analysis for the second term in equation (A.12)

〈sin(ψ0) sin(ψr)〉 = 〈M〉2 sinh

(
T

J
×G(r)

)
from which we find

g(r) = 〈M〉2 exp

(
T

J
×G(r)

)
. (A.17)

Summing overg(r) one finds the second moment of the distributionQ(M)

〈M2〉 = 1

N

∑
r

g(r) (A.18)

which, from equation (5), gives for the susceptibility per spin

χ = 〈M〉
2

T

∑
r

[
exp

(
T

J
×G(r)

)
− 1

]
. (A.19)

At low temperatures we can expand the exponential

χ ' T 〈M〉2
2J 2

∑
r

G(r)2 = T 〈M〉2
2JN2

∑
r

∑
q 6=0

∑
q ′ 6=0

ei(q+q ′)r

γq

and finally we have

χ ' T 〈M〉2
2J 2

A(N) with A(N) = 1

N

∑
q 6=0

(
1

γq

)2

. (A.20)

Using a continuum approximation it is easy to see thatA2D(N) is proportional toN , while
A3D(N) varies asN1/3. A numerical sum over theN particle Brillouin zone gives:
• for two dimensions,A2D(N) = N/a2D, with a2D = 258.59;
• for three dimensions,A3D(N) = N1/3/a3D, with a3D = 93.606.
We remark therefore that in three dimensions the susceptibility per spin remains weakly

divergent despite the establishment of true long-range magnetic order at low temperature.
This is because the density of spin wave states at small wave vector is sufficiently high to
produce anomalous fluctuations, although in this case the bulk magnetization is not destroyed
and it is not a critical effect, as discussed in the main text. From (A.20) one can see thatχ

becomes intensive only in four dimensions.
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